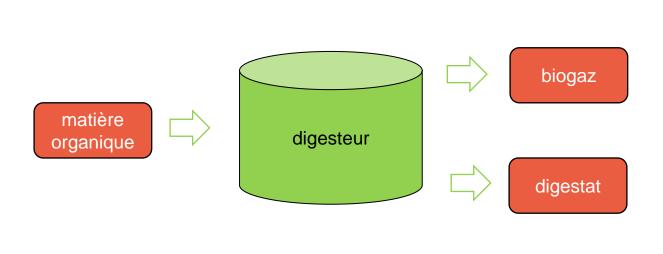
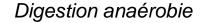




### 1. Contexte


# 2. Optimisation du plan d'incorporation

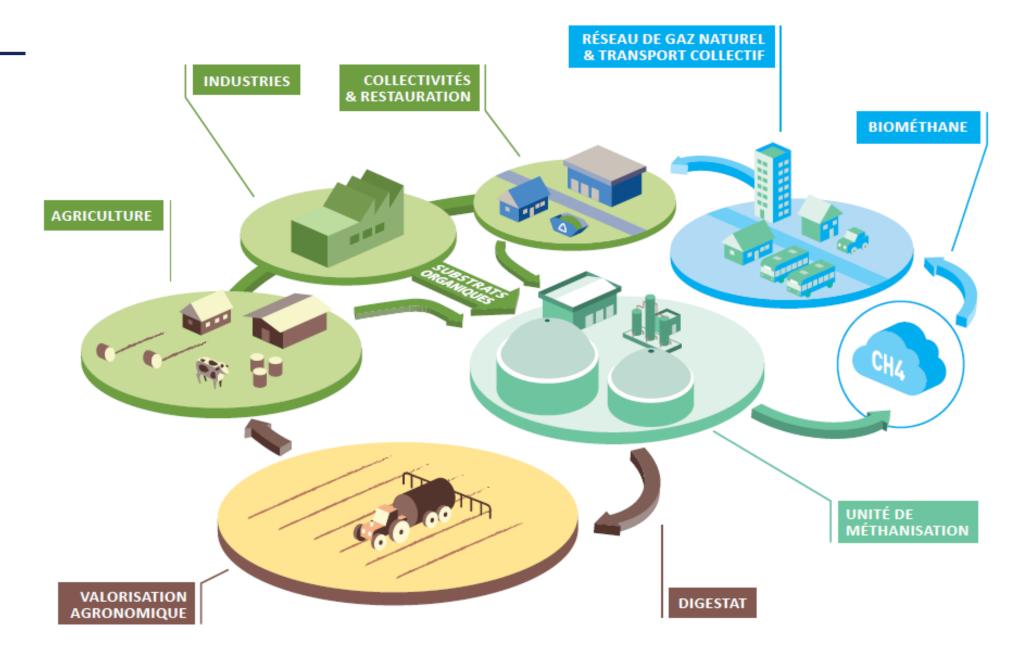

- 1. Optimisation linéaire
- 2. Approche hybride : approche bayesienne & algorithme génétique

# 3. Comparaison



# La production de biomethane par digestion anaérobie (1)








Un site de production de biométhane



# La production de biomethane par digestion anaérobie (2)





# Process de définition du plan d'incorporation





### 1. Contexte

# 2. Optimisation du plan d'incorporation

- 1. Optimisation linéaire
- Approche hybride : approche bayesienne & algorithme génétique

# 3. Comparaison



# Le modèle d'optimisation linéaire

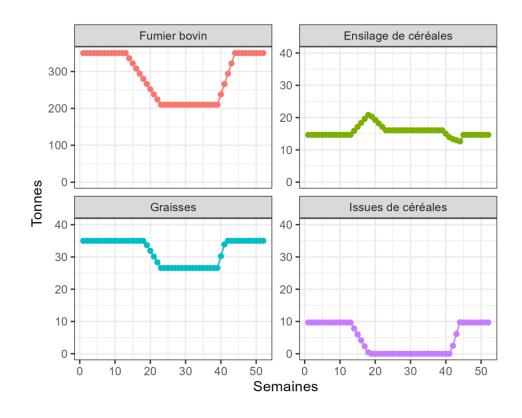
Optimisation linéaire : la fonction objectif et les contraintes sont linéaires

Variables de decision : environ 10k

Fonction objectif: maximisation du profit

Contraintes: environ 10k

Différents types : réglementaires, biologiques et techniques


Différentes temporalités : annuelle, trimestrielle, ..., quotidienne

Modeleur: PuLP (python)

Solveur : PuLP (solveur par défaut)



# Le plan d'incorporation optimal (exemple)



7.5 5.0 2.5 0.0 -2.5 0 10 20 30 40 50 Semaines

Plan d'incorporation optimal (exemple)

La variation de matière organique du plan d'incorporation optimal (exemple)



### 1. Contexte

# 2. Optimisation du plan d'incorporation

- 1. Optimisation linéaire
- 2. Approche hybride : approche bayesienne & algorithme génétique
- 3. Comparaison



# **Une approche hybride**

#### Optimisation Bayésienne & algorithme génétique

### Présentation du plan d'incorporation

- Le plan d'incorporation est une matrice :
  - $X \in \mathbb{R}^{(n*52)}$
  - *n*: le nombre d'intrants
  - Chaque colonne représente une semaine d'incorporation
  - Chaque ligne représente un intrant

$$X = egin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(52)} \ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(52)} \ & & & & \ dots & dots & dots & dots \ x_n^{(1)} & x_n^{(2)} & \cdots & x_n^{(52)} \end{bmatrix} \in \mathbb{R}^{n imes 52}$$



# **Une approche hybride**

#### **Phase 1: Optimisation Bayésienne**

### **6** Objectif

- Optimiser semaine par semaine :
  - Pour chaque semaine  $t \in \{1, ..., 52\}$ , on optimise :  $x^{(t)} = (x_1^{(t)}, x_2^{(t)}, ..., x_n^{(t)})$
  - x<sup>(t)</sup>: tonnage des intrants pour la semaine t

### **Approche Bayésienne**

- Approximation de la fonction coût f(x(t)) via un modèle probabiliste
- Utilisation d'une fonction d'acquisition pour choisir les tonnages hebdomadaires à évaluer

### **Contraintes**

- Contrainte hebdomadaire sont satisfaites par défaut
- Contraintes annuelles transformées en contraintes hebdomadaires : C<sub>i</sub>hebdo=C<sub>i</sub>annuelle /52
- On s'assure que  $\sum_{t=1}^{52} x_i^{(t)} < C_i^{\text{annuelle}}$



# **Une approche hybride**

#### Phase 2: Algorithme génétique

### Initialisation de l'Algorithme Génétique

• **Objectif**: Utiliser l'optimisation bayésienne pour initialiser la population génétique.

### Initialisation

- Création de (m) individus :
  - m/2 individus autour de x\* avec bruit gaussien :

$$X_i = X^* + \varepsilon_i, \ \varepsilon_i \sim \mathbb{N}(0, \theta^2)$$

 m/2 individus générés aléatoirement pour favoriser la diversité.

### Avantage

• Combinaison de qualité initiale (via x\*) et diversité pour éviter les optima locaux.

### Déroulement de l'Algorithme Génétique

- Cycle Génétique :
- 1.Initialisation (via Bayésienne + aléatoire)
- 2.Évaluation de la fitness :  $f(x^{(1)},...,x^{(52)})$
- 3. Sélection des meilleurs individus
- 4. Croisement (crossover)
- 5. Mutation (ajout de bruit)
- 6. Nouvelle génération
- 7. Arrêt si convergence ou nombre d'itérations atteint



### 1. Contexte

# 2. Optimisation du plan d'incorporation

- 1. Optimisation linéaire
- 2. Approche hybride : approche bayesienne & algorithme génétique

# 3. Comparaison



# **Comparaison des deux approches**

| Critère                        | Optimisation linéaire            | Approche hybride |
|--------------------------------|----------------------------------|------------------|
| Solution optimale              | exacte                           | approchée        |
| Contraintes non linéaires      | ×                                | <b>✓</b>         |
| Absence de solution réalisable | ✓ (mais avec variables d'écarts) | <b>✓</b>         |
| Modularité                     | ×                                | <b>✓</b>         |
| Temps de calcul                |                                  |                  |
|                                |                                  |                  |
|                                |                                  |                  |



